
Fermi National Accelerator Laboratory

DBS-An rlogin Multiplexor and Output Logger
for DA Systems

G. Oleynik, L. Appleton, L. Udumula, M. Votava

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

April 1994

Presented at the Conference on Computing in High Energy Physics 94,
San Francisco, California, April 21-27, 1994

$ Operated by Universities Research Association Inc. under Conbact No. DE-ACO2-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as au accourd of work sponsored by an agency of the United States
Government. Neither the United States Goverlmleut nor any agerlcy thereof; nor any of
their employees, makes auy warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usef’ulrless of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to auy specific commercial product, process, or
service by trade name, trademark, manufhcturer, or otherwise, does not necessarily
constitute or imply its endorsemelrt, reconlrtLe,Ldation, or favoring by the United States
Government or any agency thereof: The views arid opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof.

DBS - An rlogin Multiplexor and Output Logger for DA Systems*

Gene Oleynik, Laura Appleton, Lourdu Udumula, Margaret Votava

Online Systems Department
Fermi National Accelerator Laboratory

PO. Box 500
Batavia. IL 605 10

Abstract

DART Bootstrap Services (dbs) is the first
component of run-control for the DART Data
Acquisition system - the DA for the 96’ round
of experiments at Fermilab - though it has po-
tential usefulness as a powerful tool in other
distributed applications.

dbs is an rlogin session multiplexer. It allows
a user, running a single program, to start up
any number of remote login sessions, feed
shell commands to them, and collect their
output into a single (or multiple) log files (a
server keeps the sessions open and collects
their output). From this program, any session
can be attached to interactively so it appears
just like an rlogin session - dbs becomes
transparent. When finished with this interac-
tive mode, the user can escape back to dbs
and attach to a different session if so desired.
Among many other useful features, dbs sup-
plies a mechanism for cleanup (deletion) of
all processes created under a session, allow-
ing a fresh start.

1 Introduction

dbs is a Unix based tool designed to meet cer-
tain needs for working with a fully distributed
system. Though it was developed for DART
data acquisition systems, its domain of appli-
cability goes beyond this specific application.
We have taken care that the software product
is generic enough to leverage its use across a
variety of potential applications.

2 Motivation and Requirements

DART data acquisition systems consist of a

number of intelligent computers, running a
number of operating systems and a variety of
applications, distributed across a LAN [1,2].
Many of these applications are replicated
across nodes. Taken together, these coopemt-
ing applications make up a DA system. The
specific applications that make up the DA and
the architecture of the system, vary from ex-
periment to experiment. dbs addresses the
problem of how to start-up applications for a
given experiment in a uniform manner such
that the system comes up correctly as a
whole, or is “bootstrapped”.

There are several pertinent factors for the so-
lution of this problem that we folded into dbs
requirements [3] :

It must be able to start-up all applications
for the system from a source file on a sin-
gle node with minimal user interaction.

It must be easily tailorable with different
sets of applications for different systems.

It must be able to start-up any application.
There should not have to be anything spe-
cial added to an application.

It must handle replication of applications
efficiently.

It must provide some mechanism to syn-
chronize the start of client-server applica-
tions.

It must be able to start-up applications on
multiple operating systems, including
Unix, VMS, and VxWorks (the real-time
operating system we use on embedded
processors), and be easily portable to oth-

* This work is sponsored by DOE contract No. DE-AC02-76CH03000

ers.

It must be able to start applications in par-
allel across nodes so that the system can
be bootstrapped quickly.

It must provide a mechanism to remove
all applications so that a clean start can be
made.

It must record information so that start-up
failures are diagnosable, and collect the
standard output and standard error from
applications.

It must use as little system resources as
possible, and where possible, make use of
existing system based software

dbs

We found the most effective solution to the
bootstrap problem that meets the above re-
quirements to be an application built on top of
the ubiquitous, commercial network package,
rlogin, which allows authorized users to login
to a system without a password. rlogin soft-
ware is bundled with the system on all Unix
platforms and is available under VMS (e.g.
via MULTINET) and VxWorks, as well as
many other systems. In essence, no remote
software needed to be written for dbs. dbs
consists mainly of “host” software that runs
on a single node to “launch” applications
through rlogin connections to other nodes
From here on, “host” will refer to the comput-
er on which dbs runs to launch applications,
and “remote” will refer to nodes on which the
applications are started, which can include
the host node.

The host dbs software consists of an rlogin
multiplexing server and a user interface ap-
plication, referred to as the “client”, which
drives this server [4]. Through the client, the
user can create named rlogin “sessions” to re-
mote nodes, non-interactively send com-
mands to them to be executed, or connect
“transparently” to any one of the sessions. In
the latter case, the dbs client is transparent to
the user, that is, it appears as a normal rlogin
to the remote host, except that an “escape”
breaks the user back to the dbs client. The cli-
ent uses the TCL command line interpreter

(free software) [5] and can be driven from a
command file or interactively. The dbs client
program can be exited at any time, and re-
started later - the server keeps the sessions
that are open and available.

The rlogin multiplexor server manages the
bookkeeping of the sessions and routes ses-
sion input and output between the remote ses-
sions and the client application, or, as will be
seen later, it can route session output to files
on the host.

4 Session Management and Com-
mands

A dbs user creates an rlogin session to a re-
mote node with a command that associates a
“session-name” with the session. The ses-
sion-name is used to identify the session in all
further transactions. As will be seen, this sim-
ple session-name abstraction has powerful
consequences.

Commands are sent to a session with the
“s-command” client command. This com-
mand is asynchronous in the sense that it is
sent to the sessions standard input without
waiting for an acknowledgment, permitting
commands to be executed on different ses-
sions in parallel. A command can be broad-
cast to all sessions by leaving the session-
name field blank; we have plans for more
powerful wildcarding.

5 Session Output Management & Log-
ging
The only feedback from remote sessions is
their output through standard out and stan-
dard error. One implication of the require-
ment that dbs be able to start “any old
application” is that dbs has no control over its
output, which may contain important infor-
mation. Therefore, dbs was designed to op-
tionally capture session output and write it to
a file.

dbs buffers the output from its sessions in the
server. The buffer size can be specified per
session when the session is created (a default
is provided).

If no output file is specified for the session,
with the s-fileout command, then if the ses-

sion’s buffer fills, the output will back up to
the remote session and eventually block the
application producing it, until the session is
attached to interactively through dbs, or an
output file is specified for the session.

If an output file is specified for a session, then
the sessions output buffer is flushed to the file
periodically at a user specified interval. The
output is also automatically flushed to the
output file if the session’s buffer fills,

Any number of sessions’ output can be di-
rected to a single file; the s-fileout command
takes the “all sessions” wildcarding. A time
and session-name stamp precedes each flush
so one can make sense of the mixed session
output.

6 Remote Session Software Library -
Application Cleanup and Synchronization

We have strived to keep the remote software
to a minimum. dbs can be run with no special
software on the remote side. However, in or-
der to be able to use the functionality of
cleaning up (i.e. killing or removing) applica-
tions for a clean start, or synchronizing the
start-up of a server and its clients, some re-
mote software is required.

We provide a process “cleanup” registration
routine that applications call if they need to
be killed via the “s-cleanup” command. Reg-
istration and cleanup is done on a per session
basis, but like other dbs commands,
s-cleanup accepts wildcarding. Registration
is done through foolproof mechanisms, such
as “fuse? on Unix and a task variable mech-
anism developed for VxWorks.

Some applications need to reach a certain
point before others can be started. An exam-
ple is a network client-server application, for
which the server needs to begin listening for
client connections before the clients can be
started. dbs provides the “s-waitcommand”
command for this purpose. s-waitcommand
sends a command to the remote session, and
waits with a time-out for a special character
sequence to be sent back over the standard
out of the remote session. A routine is provid-
ed for remote applications to write this se-
quence to their standard output. In the client-

server example, the server would call this
routine immediately before listening for cli-
ent connections, and the clients would be
started immediately after the server.

7 Security

Since dbs is rlogin based, it inherits rlogin se-
curity of account based .rhosts, in which
trusted machine/account pairs are specified in
this file. Account level security is integrated
into dbs.

8 Future Plans

We currently plan to add two new features:
routing session output to slave Xterm win-
dows in addition to files and supporting full
regular expression wildcarding for sessions.
The former will add more visual monitoring
of session output, and the latter the command
multicasting capability, e.g. sending a com-
mand to all nodes of a given operating system
type (by embedding the OS type in the ses-
sion-name), as well as directing output from
sessions matching the wildcarding to a single
file.

We wish to integrate dbs with our DA config-
uration management “database”, so that the
systems application start-up is specified
along with other DA parameters through the
database. Since dbs can take command input
through a pipe, we imagine this will be ac-
complished by piping into dbs the output of
an application which extracts the start-up in-
formation from the database.

We also plan to upgrade the command pars-
ing of the client TCL commands to an im-
proved parser we have developed.

9 Conclusions and Observations

One experience we would like to pass on is
the fact that we believe we gained in produc-
tivity and maintainability by writing the mul-
tiplexing server in C++, and using a
commercial class library, tools.h++, from
Rogue Wave Inc. We were able to use their
hash dictionary class for session-name map-
ping, and its regular expression capabilities
will make it easy to extend the session-name
wildcarding capabilities.

We have built a networking tool, dbs, to aid
in the bootstrapping of systems built from
distributed, cooperating applications. While
we built this tool specifically for the needs of
HEP data acquisition, we feel that we were
careful enough to make the tool general
enough for use in other distributed applica-
tions.

References

[II

PI

[31

[4

[5

R. Pordes et al., “Fermilab’s DART
DA System,” these proceedings.

G. Oleynik et al., “DART - Data Ac-
quisition for the Next Generation of
Fermilab Fixed Target Experiments,”
IEEE Transactions on Nuclear Sci-
ence, Vol41, No 1.

L. Appleton et al., “DART Run Con-
trol Requirements,” Fermilab Com-
puting Division document PN-47 1.

L. Appleton et al., “DART Bootstrap
Services (dbs),” Fermilab Computing
Division document PN-483.

Ousterhout, “Tel: An Embeddable
Command Language,” 1990 Winter
USENIX Conference Proceedings.

